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ABSTRACT 

An attached flow theory for predicting the gust induced loads on slender bodies traveling 

at supersonic speeds is presented. It has been assumed that the vehicle remains un- 
deflected as it traverses the gust. For arbitrary gust penetration depths, the method 

of characteristics has been employed. In the case of high frequencies, analytic solu- 
tions have been derived for both small and large gust penetration depths. In each 

instance, results for a sinusoidal gust are also presented. 
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NOMENCLATURE 

A 

a 

'n 
bn 
B 

C 

P 
C 

dn 3 Dn 
en 

g , G  

F 

hn 
k 

- K1 

L-l 

M, 

L 

Q 

P 

PO - 
q 
R 

r 
S 

S(Y)  
t 
U 

U 

rR2 , Cross-sectional area, dimensionless 

a/U, , speed of sound, dimensionless 

Constants defined in Appendix C 
Constants defined in Appendix B 
B/U, L , Axially symmetric component of the perturbation potential, 

dimensionless 
C/U, L , Non-symmetric component of the perturbation potential, 

dimensionle ss 
Pressure coefficient 

Constants defined in Appendix B 

Constants defined in Appendix B 

F/q , Normal force, dimensionless 

Wind gust functions, dimensionless 
Constants defined in Appendix C 

Fourier variable, dimensionless 
Modified Bessel function of the first kind and of the first order 

Body length, m 
Inverse Laplace Transform operator 

r/x, Wavelength of sinusoidal gusts, dimensionless 
U,/a, , Mach number 

t - x , Gust penetration parameter, dimensionless 
t - x- x 

0, 

R/L , Local body radius, dimensionless 

r/L , Radial coordinate, dimensionless, see Figure 1 

Laplace variable, dimensionless 
Unit step function, S ( y )  = 0 for y 5 0 and S ( y )  = 1 for y > 0 

tlv,/i; , Dimensionless time 

U/U,, Axial velocity ratio 

aC/axl , Velocity perturbation due to wind gust, dimensionless 

- -  

-- - 

-- - 

- -  

Gust penetration parameter, dimensionless 
2 p, - 3  U,/2 , Dynamic pressure, Kg/m 

-- 
- -  

-- 
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NOMENCLATURE (Cont' d l  

V 
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e 
K 

A 

cp 

11) 

W 

r w 

SUBSCRIPTS 

i , P , m ,  n ,  N 

k 
r 
x , x' 
t , t' 
W 

aC/ar,  Velocity perturbation due to wind gust, dimensionless 
Wo/UW, Maximum amplitude of wind gust, dimensionless 

%/x , Axial coordinate, dimensionless, see Figure 1 

- -  

Dimensionless constant 

Constants defined in Appendix B 
2 MW - 1 

Ratio of specific heats 

Gamma function 
-2-2 L V , Laplace Operator 
Dimensionless constant 

Defines family of characteristics of slope -1 

Azimuthal coordinate, see Figure 1 

K ~ ( M ~ S R ) / I K ; ( M , S R ) M  W SRI - -  
A/L , Slope of characteristic curves, dimensionless 

Defines family of characteristics of slope +1 

s/iW , Density ratio 

Euler's constant, 0.5772156649 

@/Urn L , Total velocity potential, dimensionless 
p/U, L , Perturbation potential, dimensionless 

Psi function 
Constant; frequency of sinusoidal gust, dimensionless 
MWRw 

-- - 
-- - 

Integer constants 
k element of the Fourier spectrum 
Partial derivative with respect to r 
Partial derivative with respect to x , x' 
Partial derivative with respect to t , t' 
Conditions upstream in undisturbed flow 

th 
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SUPERSCRIPTS 
- -  
I , R  
(-1 
( - 1  
* 

Imaginary and real components respectively 
Dimensional quantity 
Laplace transform with respect to t 
Fourier transform with respect to t1 

I Derivative with respect to the total argument; transformed space as 
defined by Eq. A1 

( n )  nth approximation 

viii 
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ATTACHED FLOW GUST PENETRATION LOADS 

I. INTRODUCTION 

A linearized attached flow theory for the prediction of the aerodynamic forces (which 

would represent forcing functions in the equations of motion for an elastic launch 
vehicle) on bodies of revolution encountering arbitrary wind gusts is developed. Solu- 
tions to the full linearized potential equation for supersonic flow are  found by employing 
the method of characteristics. For very slender bodies, a simplified form of the 
potential equation is solved through the application of Laplace Transform techniques. 

Solutions valid for small and large gust penetration depths are derived in analytic 

form. 

11. GENERAL FORMULATION 

By limiting our attention to inviscid, irrotational, isentropic flows, the potential 

equation is 1 

For pointed bodies of sufficiently small slope, we introduce a body fixed perturbation 

potential. 

Relative to the cylindrical coordinate system shown in Fig. 1, the linearized form of 

Eq. (1) takes the following form 

1 

LOCKHEED MISSILES & SPACE COMPANY 



FIGURE 1 

CYLINDRICAL COORDINATE SYSTEM 
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The boundary conditions associated with Eq. (3) for an axisymmetric body in axial 

supersonic flight encountering a lateral wind gust Go G (% , f )  parallel to the z-axis 

a re  * 

at the body surface ? = E( 2 )  and 

In terms of dimensionless quantities, the mathematical statement of the problem is of 

the form, 

q r ( r  = R )  = - -  dR dx W o G ( x , t )  cos 8 (7a) 

The pressure coefficient as derived from Bernoulli; equation for nonsteady flow is 

P 
C 

*The potential describes a missile in an axial flow suddenly being subjected to a 
lateral z displacement per  unit time equal to wo G ( 2 , f ) . 
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The linearized form for c correct to the first order is 
P ’  

and the force per unit length in the z-direction is of the form 

c ( r  = R ) R c o s 0 d O  
0 

III. METHOD OF CHARACTERISTICS SOLUTION 

To effect a solution to Eq. (6), subject to the constraints of Eqs. (7a, b), the perturba- 

tion potential cp may be written as 

cp(x,r ,O , t )  = B ( x , r )  + C ( x , r , t )  cos0  

Inserting Eq. (8) into Eq. (6) yields the two equations 

2 1 p B = - B  - - B  = O  rr r r 

dividing the problem into two separate problems; the flow past a body of revolution, 
(a) at zero angle-of-attack and (b), at an unsteady angle-of-attack. The boundary con- 

ditions associated with Eqs. (sa) and (9b) are respectively 

dR B r ( r  = R )  = dx 

4 
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C r ( r  = R )  = -WoG(x, t )  (13b) 

A detailed description of the coordinate transformation and numerical method utilized 

in obtaining a method of characteristics solution to Eq. (9) is found in Appendix A. 

IV. STRIP THEORY SOLUTION 

By assuming the body to be very slender and using a high frequency approximation, 

the gust loading problem can be reduced to a strip theory formulation. Mathematically 

this is effected by ignoring x-derivatives relative to t- and r-derivatives in  the equa- 
tion for the perturbation potential. Under this approximation Eq. (12b) reduces to 

1 C 2 

r 
Crr + r C r  - - - MooCtt = 0 2 

subject to the boundary condition given by Eq. (13b). 

A solution to Eq. (14) can be obtained through application of the theory of Laplace trans- 
forms. If we define 

e ( r , x , s )  = e C ( r , x , t ) d t  I -st 
0 

and apply this transform to Eqs. (14) and (13b) we have, 

r2crr + rer - (1 + M t s 2 r 2 ) c  = 0 

er(r = R )  = - W o G ( x , s )  
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The solution to the above pair of equations, which remains bounded at infinity, can be 

written as 4 

N c =  
- Wo 5 ( x  s ) K1 ( M o o s  r )  

Moo s K; ( Moo s R ) 

where K1 is the first order modified Bessel Function of the first kind and primes 

indicate differentiation with respect to the total argument. 

Upon substituting Eqs. (9) and (11) into Eq. (10) and applying the Laplace transform, 

we have 

[(l + M m s  2 2 2  R ) K  2 - K ] W ~ ~ ? ~ A I  -2AWoK[Gx + s G  
ax 

The desired solution is obtained by taking the inverse Laplace transform of Eq. (17) for 

specific wind profiles G ( x t ) . The inversion can be carried out through the applica- 

tion of the theory of residues which involves the numerical evaluation of several 
6 integrals . In view of the more general solution discussed in Appendix A this will not 

be done; instead, expansions of the right hand side of Eq. (17) will be made which 

enable us to obtain analytic results valid for small and large gust penetrations. 

IV-A. Series Solution for Gust Induced Loads Near the Gust Front 

The general form for the wind gust relative to a coordinate system attached to a body 

moving with a velocity Um into the gust is 

G ( x , t )  = g w ( t  - x - xo)] S ( t  - x) [ 
3 and the associated Laplace transform of G is 
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-s(x+xo) -s(x+xo) 0 

w / g (  z )  dz 
-x w 

0 

For the form given by Eq. (18), the transform of the loading reduces to 

- t?F = WoGA1[(l  + 
ax 

Asymptotic expansions of K , K~ and E in terms of s yields series approximations 
3 which are easily inverted through application of the Convolution Theorem . The de- 

tails of the expansion and subsequent inversion for small values of the gust penetration 
parameter appear in Appendix B; the result is of the form 

2 

uRdl + doD1 + (:)R)(wid2 - + w R d 1 D 1 + d 0 D 2) + - i(i:R) - (wid3  

+ uRd2D1 2 + wRdlD2 + doD3) + i ( & r ( w i d 4  + wRd3D1 3 + wRd2D2 2 

( ~ ~ ] +  Sip)(.... + eoD1 + 

2 

+ eoD2) + L - I L  2(MpR) (uRe3 3 + wRe2D1 2 + w R e 1 D 2 + e 0 D 3)+i(*f(wie4 
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IV-B. Series Solution for Gust Induced Loads Far  From the Gust Front 

If the functions K , K' and 

placed by their Taylor Series' approximation, a Laplace inversion valid for large values 
of the gust penetration parameter can be effected. 
Appendix C and the final form for the loading is 

which appear on the right hand side of Eq. (20) are re- 

The solution is discussed in 

i3F WR -- 
ax W ~ A '  

IV-C. Series Solution For A Sinusoidal Wind Gust 

The solution for the gust loading due to a sinusoidal wind is obtained from Eqs. (B6) 
and (C6) when using the high frequency approximation for the potential equation. The 

gust is described by Eq. (18) with g defined as, 

g = s in[w( t  - x - xo)] (21) 

3 and g"( s/w ) as , 
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For small values of the gust penetration parameter, corresponding to stations near the 

gust front, Eq. (B6) reduces to the form 

= S ( p )  -w s inwxo + w R (A)[ MooR WR cos w x  0 l R  
sin w x o  + wRD1 cos w x  . 

0 

- D sin wxo]  1 

D s i n w x o ]  2 

where Dn is defined ia Appendix B. 

For large values of the. gust penetration parameter, corresponding to stations far 

from the gust front, the asymptotic form for the gust loading is given by Eq. ((36) 

9 
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aF WR -- 
ax W ~ A ’  

( a x  coswxo - s i n w x  ) 0 0 
= S ( p o ) l - 6 ( ~ ~  c o s a x ,  + WR 18 ( ’0 f 

( )7 ln2(*) + 62.5 e o s w x  ( - j+) 
0 M m R  MtoR 

- 1034 COS WX,  MR 
MCaR 

-5 
2 

- 24(&) [coswx,(. .~~) + 8a + 2 ) + - ; ((axo) cos wxo - cos u)x 0 
aR 

V. CONCLUSION 

This report is concerned with the first phase of a study of the effects of wind gusts on 

missile dynamics. We have restricted our attention to gust induced aerodynamic 
forcing functions on very slender bodies traveling at supersonic speeds. In this first 
segment the aerodynamic loading, assuming attached flow, has been derived employing 

the method of characteristics and transform techniques. Solutions for arbitrary wind 
gusts have been found for all penetration depths; in the case of high frequencies, 
analytic solutions for the gust induced local loads have been derived for stations both 

near and far from the gust front. 

10 
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Appendix A 
METHOD OF CHARACTERISTICS SOLUTION 

To first order, the pressure perturbations associated with the axial flow [Eq. (12a)l 

do not contribute to the aerodynamic loading. Therefore, attention will be focused on 
the flow due to the wind gust which is characterized by the following equations 

C r ( r  = R )  = -WoG(x , t )  (13b) 

Equation (sa) can be reduced to a more convenient form by making a transformation 

from the ( x , t ) plane to the ( x1 , t1 ) plane 

With this transformation, Eqs. (sa) and (9b) become 

1 c -  cx'x' - 'rr - r C r + - -  r 2 t' t' 

C,(r = R )  = -woG(x l , t l )  (A2B) 

Upon taking the Fourier Transform of the above set of equations with respect to t1 , 
we have 

A--1 
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- C *  - - C * + - + k C * = O  1 c* 2 
c;1 rr r r  2 r 

C * ( r  = R )  = -WoG*(xl,k) r 

where 

C ( X I  , r , t l )d t l  -iktl C * ( x ' , r , k )  = e 
0 i 

and similarly for G* . 

Equation (A3a) is classified as a quasi-linear hyperbolic second-order equation and 

can be solved numerically through application of Masseau's method. 

appropriate finite difference equations a re  substituted for the characteristic differential 

equations, which are then solved by an iterative scheme. 

In this method, 

The two families of characteristic lines a re  defined by the equations 

where 6 and q are constants. The slope's associated with the families 6 = constant 
and q = constant are +1 and -1 respectively. The characteristic differential ex- 

pressions valid along the direction h = +1 are 

dC* = u*dx' + v*dr 

A-2 
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where 

Along the direction A = -1, the characteristic differential expressions are 

du* + dv* - fdx'  = 0 

dC* = u*dx' -+ v*dr 

Interior Point Solution 

At  an interior point, an iterative solution can be obtained from Eqs. (A5) and (A6). 

Single subscripted variables imply evaluation at the field point denoted by the subscript 

(Fig. Al ) ;  a doubly subscripted variable represents the average value between the two 

points. A quantity without a superscript is exact, while one with a superscript (in 
brackets) implies that it is an element of a sequence of approximate values obtained 

through iteration. 

Fig. A1 CHARACTERISTIC GRID 

A-3 
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The method of solution for point 4 in Fig. A l ,  assuming conditions at points 2 and 3 

a re  known, will be described. The characteristic lines, 5 = constant and q = con- 
stant, are straight lines; thus the coordinates of point 4 (xf4,  r4) is obtained from the 

equations 

The finite difference forms of Eqs. (A5a) and (A6a) together with the average of the 
difference forms of Eqs. (A5b) and (A6b) a re  used to generate the sequences uz (n) , 
v;(n) , c;(n)* 

For the nth approximation we have, 

where for n = 1 , 

A-4 
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and for n >1 ) 

The iteration is continued until successive values for uz (n) ) v; (n) ) and Ci(n) 

respectively a re  sufficiently close to each other. 

Boundary Point Solution 

To obtain solutions along the body surface, the above procedure must be modified in 

the following manner. 
their values are known at points 2 and 4. Along the q = constant line we have 

Values for the flow properties at point 5 will be found assuming 

XI - xi = -(r5 - r4) (A9a) 5 

A-5 
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( u p  - u;) + ( V S  - vq*) + + k2C$)(xk - x i )  = 0 (A9b) 

where r5 = R(x '  ) and v j  = -WoG*(xb) 5 

The total differential of the function C* ( x' , r ) is 

= u*dxl + v*dr  

Using the boundary condition, Eq. (A3b), and the equation for the body radius R ( x' ) , 
we have along the surface 

dR - =  dC* u* - W,,dx'G*(x') 
dx' 

The finite difference form associated with the above equation for the nth approxima- 

tion to the flow properties at point 5 is 

Hence Eqs. (A9) and (A12) define sequences of solutions for the flow quantities at the 

body surface. 

Upstream of the 5 = 0 characteristic line the perturbations are zero. 

A-6 
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Normal Force Distribution 

The pressure coefficient in the ( xf , t' ) plane is obtained from Eqs. (7d), (Ala), and 

( A W  

In terms of the axial and transverse perturbation potentials 

form 

(A1 3) 

B and 6, c is of the 
P 

c = -2p -1 Bx, - 2p-I cos 6 (cxl - MilCtl)  
P 

Upon substituting Eq. (A14) into Eq. (7e) the Fourier transformed expression for the 
normal force distribution is* 

- -  aF* - -27rR(u* - ikM:C*) a xi 

where u* and C* a re  to be evaluated at the body surface. 

Sinusoidal Wind Gust 

The solution for the aerodynamic loading due to a sinusoidal wing gust is readily ob- 

tained from the above equations. A gust traveling at a relative speed c, in the axial 

direction is of the form 

*Fourier Inversion Formula 
00 

C ( x ' , r , t ' )  = & eikt' C * ( x ' , r , k ) d k  
-, 

A-7 
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where the unit step function S has been introduced to account for penetration transients. 

In terms of dimensionless variables and complex notation we have 

2n 
!I 

i - (t-x) 
G ( x , t )  = Im e 

for t - x > 0 . 
plane the equation for the gust is 

Upon making the transformation from the ( x  , t ) plane to the (XI , t' ) 

ikxl/Mm ikt' e G ( x ' , t ' )  = I m e  

where k = 2nMm/&. In terms of the Fourier transform formulation we can write 

W 9 )  
ikt' G(x' , t l )  = G c ( x t , k ) e  

where GC ( x' , k )  is the amplitude of a single element of the entire spectrum. If we 

define 

and substitute into Equations (A2a) and (A2b) we have 

1 ''+ k2C* = 0 
k - c *  -;c; +--  2 krr r r  cI 

I x'x' 
(A21a) 

(A21b) 

The solution to the above pair of equations is transformed to the (x' , t1 ) plane upon 

multiplying by eik' . 
ents; in view of the form for G ( x' , tf ) , Eq. (A18), the imaginary component of 

Eq. (A20) is the physically significant portion of the result. 

In general, this product will have real and imaginary compon- 
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In order to solve the pair of Eqs. (A21a) and (A21b), we introduce the real and 

imaginary components for C* and G* 

- 
R T C* = Ck + iCk  k 

- 
R T G* = G + iGk k k 

Equations (A21a) and (A21b) are then replaced by the sets, 

- 

- 
R C ( r  = R )  = -Wo cos (kxf/MW) 
kr 

and 

ck 'f ( r  = R )  =-Wosin(kx1/MW) 
r 

(A22a) 

(A22b) 

(A23A) 

(A23b) 

Each of the above sets of equations can be solved through application of the numerical 

technique described in the previous sections. 

A-9 

LOCKHEED MISSILES & SPACE COMPANY 





Appendix B 

SERIES EXPANSION FOR SMALL VALUES OF THE GUST 
PENETRATION PARAMETER 

Solutions for the gust loading, relative to the wind profile given by Eq. (18), a re  

obtained from Eq. (20) through a Laplace Inversion. For large values of S , the 

functions K and G can be replaced by their asymptotic forms 4 

03 

11 + ( M w s R ) 2 ] ~ 2  - K = 2 D n ( M W s R ) "  
n= 0 

-x w 0 

where bi is defined by the expansion for 

03 

iqf) = 1 bn($" 
n= 0 

and 

do = bo , dn bn - g (n-1) (0) 

By1 
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= 895/1024 ) P4 = 44973/32768 P3 

2 
1 - c1 D = 1 + 2 c 2 + c  2 Do = 1 ) D1 = 2c1 - 1 

An expression for a-F/ax ) which is valid for large values of s ) is obtain upon sub- 

stituting Eqs. (Bl) and (B2) into Eq. (go). The transformation from s to t is easily 

accomplished through application of the inverse transforms 3 

L-l{s-") = tn-l /(n - l)! s34) 

L-l{e-EST(s)} = f ( t  - E ) S ( t  - E )  (B5) 

The Taylor Series form for the aerodynamic loading associated with a wind gust is 

B-2 
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where p and po are  gust penetration parameters and eo = 0 , en = g (n) (-xo o ) . 

B-3 

LOCKHEED MISSILES & SPACE COMPANY 





Appendix C 

SERIES EXPANSION FOR LARGE VALUES OF THE GUST 
PENETRATION PARAMETER 

In order to obtain solutions for large values of po , the functions K , K ~ ,  and G 

which appear in Eq. (20) are replaced by their Taylor Series' approximations 4 

2 2  [l + ( M m s R )  ] K  - K 

= 2 + 3 ( M m s R )  ("."") + (3a + 1 ) ( M m ~ R ) 2  + 2.5(Mo3sR)  

+ 2(40 + l ) ( M m ~ R ) 4  ln(MisR)  + l . 3 7 5 ( M m s R )  In 3 f y R )  + ...... 

n= 0 

where ai is defined by the expansion for 

m 

= 1 a (sr 
n w  

n= 0 

and 

c-1 
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h 
= an + (-if'-$ 

An expression for aF/ax valid for small values of s is obtained upon substituting the 
above expansions into Eq. (20). The resultant form involves functions of the form 
sn In ms . 
and its derivatives with respect to m . 

These can be inverted through application of the following inverse transform 

sin ( nm) tm-n-2 1 = ( - l ) " + ' r ( n +  2 - m )  n 
L-l{ sn-m+l 

The first derivative of Eq. (C4) with respect to m yields the following inverse 
Laplace Transform 4 

r ( n  + 2 - m ) c o s n m  L-l{ -sn-m+l Ins )  = (-1) n+l tm-n-2 

sin nm + 2 [ 1 n t  7.i - r ( n  + 2 - m ) + ( n  + 2 - m)] 

Additional inversion formulas can be derived by differentiation of each new form. 

These equations together with Eq. (B5) are sufficient for evaluating the asymptotic 
form for the aerodynamic loading associated with a wind gust, 

aF  WR -- 
ax W ~ A '  

c-2 
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